Analisi matematica 4

A.A. 2020/2021
6
Crediti massimi
47
Ore totali
SSD
MAT/05
Lingua
Italiano
Obiettivi formativi
L'insegnamento si propone di fornire agli studenti competenze teoriche della teoria moderna delle equazioni alle derivate parziali (EDP).
Nella prima parte si studiano gli spazi di funzioni: spazi di L^p di Lebesgue, spazi di Banach, spazi di Hilbert. Nella seconda parte viene mostrato come questi spazi sono l'ambiente naturale nei quali si ottengono teoremi di esistenza ed unicita` per una grande classe di EDP.
Risultati apprendimento attesi
Lo studente al termine del corso avrà acquisito le seguenti abilità:
1) conoscera' struttura e proprieta` degli spazi L^p di Lebuesgue
2) avra` buona conoscenza delle proprieta` degli spazi di Banach e di Hilbert
3) conoscera` gli spazi di Sobolev
4) avra` visto i teoremi fondamentali di compattezza: i teoremi di Ascoli-Arzela e di Rellich-Kondrachov
5) conoscera` la formulazione debole di equazioni ellittiche del secondo ordine
6) sapra` applicare il principio di Dirichlet ad equazioni ellittiche lineari e nonlineari
7) conoscera` l'importanza dei teoremi di regolarita' di soluzioni deboli e avra` visto i teoremi a riguardo
8) avra` studiato l'equazione del calore e le formule di rappresentazione delle soluzioni
9) sapra` la teoria moderna delle equazioni paraboliche del secondo ordine, le soluzioni deboli e le stime d'energia
10) avra`studiato le equazioni iperboliche
Programma e organizzazione didattica

Edizione unica

Responsabile
Periodo
Secondo semestre
Programma
Spazi L^p
· Spazi di Banach e spazi di Hilbert
· Introduzione alle distribuzioni
· Spazi di Sobolev
· Formulazione debole di equazioni ellittiche del secondo ordine
· Il principio di Dirichlet
· Regolarita` di soluzioni deboli
· Equazioni paraboliche del secondo ordine: soluzioni deboli e regolarita`
Prerequisiti
Analisi Matematica 3
Metodi didattici
Lezioni tradizionali in aula, alla lavagna.
Materiale di riferimento
L.E. Evans, Partial Differential Equations, AMS, (1998)
H. Brezis, Analyse fonctionnelle, Masson, (1983)
D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer, (1977)
E. Lieb, M. Loss, Analysis, GTM in Mathematics, vol. 14, AMS, (1997)
Modalità di verifica dell’apprendimento e criteri di valutazione
L'esame consiste di un'unica prova orale (30 minuti) tesa a verificare le conoscenze teoriche acquisite nel corso e la capacita' acquisita di svolgere esercizi di tipologia simile a quelli proposti durante il corso.
MAT/05 - ANALISI MATEMATICA - CFU: 6
Esercitazioni: 12 ore
Lezioni: 35 ore
Docente: Ruf Bernhard
Siti didattici